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SUMMARY

Lagrange's famous studies of the three-body problem, pre-

sented in Tisserand's Trait_ de M_canique C_leste, Vol. I, are

redeveloped in modern mathematical expressions. This new por-

trayal of a very old problem of celestial mechanics gives rise to

various considerations which can be very useful for the practical

computation. In particular, the nine elements of the "reduced"

three-body problem are defined as a symmetrically constructed

system of three groups of three elements each, and their differ-

ential equations are shown. A by-product of this study is a rep-

resentation of the coefficients of the equation of the fourth degree

for Lagrange's quantity p in symmetrical form.
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ON LAGRANGE'STHEORYOF THETHREE-BODYPROBLEM

by

Karl Stumpff*

Goddard Space Flight Center

INTRODUCTION

Lagrange's famous treatment of the three-body problem is still the point of departure

of many studies on this difficult problem, which has never been solved in its totality. Al-

though Lagrange's theory is interpretated excellently in its mathematical elegance and

clarity in Tisserand's textbook of celestial mechanics,** it is intriguing and, for modern

application, practical to bring forth even more the insight and beauty of this theory by using

modern mathematical representation. The following considerations are intended mainly to

serve the end of bringing this classic theory, in new trappings, into the focus of celestial

mechanical study. Also, in the reconsideration of this old problem, certain previously ig-

nored questions will be answered.

Lagrange presented the following postulate: The general three-body problem can be

solved completely if it is possible to represent as functions of time all those factors which

are independent of the special selection of the coordinate system. The relative three-body

problem (i.e., the problem of the motion of two bodies In reference to a third or of all three

in reference to the common center of gravity) requires twelve integrals, three of which de-

termine the orientation of the system in space. Thus by Lagrange's theorem only rune in-

tegrals must be found, for the other three can then be determined easily by a simple quadra-

ture based upon functions known.

According to Hesse, we call this problem of seeking the nine "geometric" integrals the

"reduced" three-body problem.*** It Is easy to see that this reduced problem can actually

be satisfied by nine quantities which are invariable with respect to coordinate transforma-

tion. The geometric figure formed by the four vectors determining motion-- the vectors of

location and velocity of the two bodies with reference to the third-- is determined by nine

quantities which are independent of the coordinate system. These nine quantities are the

values of these four vectors and the five angles by which the vectors' respective locations

*NAS-NASA Research Associate; Professor Emeritus, G/_ttingen University.

°*Tisserand, F., _Trait_de M_:anique £eTeste, _ Paris: Gau_thier-Villars et Fils, 1889, Vol. I.

*UThis is not to be confused with the restricted three-body problem.



are fixed. The construction of this figure from these nine elements is not significant in

itself, since the components can be assembled in several different ways; but of the various

possibilities there will always be only one that is compatible with the initial conditions

given.

These facts, easily understandable geometrically, are reflected in the mathematical

relationships between the elements of motion. The relative vectors of location of two

bodies in reference to the third are p,, Pz, and the relative velocity vectors 1;1, P2; and

for convenience let

Pl = rl' Pl -- r2' PZ -- r3' P2 -- r4"

The geometrical figure formed by these vectors (discounting the aforementioned additional

possibilities) is determined by the scalar products possible between them:

p.b : (r.r,) -- x xb+y.y_+zz b, (1)

which form the matrix

(2)

Because P,b = Pb., this matrix will be formed from ten different elements among which

the identity

IMI= o:1:::
P41 "*° P441

x, Yl zl 0

• • o •

• • • • ,

X4 Y4 Z4 0

2

0 (3)

holds; therefore only nine of the quantities (Equation 1) which are independent of coordinate

transformation are arbitrary, whereas the tenth is a function of the others.

NEWFORMOFTHEEQUATIONSOFLAGRANGIANTHEORY

The beauty of the Lagrange theory can be completely expressed only if we provide

completely symmetrical formulas. This symmetry cannot be attained if a dominant position



is assignedto oneof the threebodies,as in theabovedis-
cussion.Thereforewewill introducea referencesystemin
whichnoneof thevectors is favored. For this purpose,we
will call thethreemassesm1, ms, ms (Figure la) or mi, mj,

mk (Figure lb), where the indexes i, j, k traverse the val-

ues 1, 3, 5 or their cyclic permutations. The relative

vectors between the masses mj, mk are then labeled

r i = "_j m k

and form the closed train

r| + rj + r k = 0. (4)

The same also applies to the relative velocity vectors; if

we set

rl = r2' r3 = r4' r5 = r6'

or

_! = r_, _j = rz, rk = r_,

3

m s

m 3
m 1 r 5

(o)

m k

m i

(b)

F;gure 1--Relat;ve positions
of three bodies

where _ = i + 1, fl = j + 1, _, = k + 1 traverse the values 2, 4, 6 or their cyclic permuta-

tions, then it follows from the differentiation of Equation 4 that

r a + r E + r_, = 0 • (5)

From the six vectors rl, "'" r6, 36 invariables (rarb) -- Pab can be formed, but only 21 of

these are different since P.b = Pb." Twelve relationships exist among these quantities--

Equation 3 and eleven others -- by means of which the five quantities Pls, P2s' "" " Pss and

the six quantities P16, P66, "" P66 can be reduced to the ten invariables of the matrix

(Equation 2) using the linear relations of Equations 4 and 5. For instance,

Pls : (rlr,) : (r,,- r I -r3) = -Pll- P,3 ' (6)

PSS : (rsrs) = (-rl -r3)2 = Pll + P33 + 2P13 " (7)

The second of these equations is identical to the cosine theorem of plane trigonometry ap-

plied to the triangle of the three bodies in Figures la and lb.



Equation 3 is not symmetrical since it contains only the invariables with the indexes

1 to 4; it can be made symmetrical, however, if we use Lagrange's quantity p.

Lagrange noted that the remarkable relationship

2p = P14- P23 = P2S - Pl_ = P3_ - P4s (8)

exists among the invariables, for

P14 - P23 = - (P16 + P12) + (P2s + P21) = P2S - P16'

(P34 + PS4) _ (P43 ÷ P63) = P36 - P45'

2Sl = P36 + P4S'

2% = P2s + PI_, I (9)
2sS = P14 + P23'

and

P14 - P23 = --

On the other hand, if we set

from Equations 7 and 8 we obtain

PI4 = ss + p' P2S = s3 + p' P36 = Sl + p

P23 = SS - p' Ple = S3 - p' P4S = Sl - p"

If Equation 10 is substituted into Equation 3 for P14

M

Pll

P21

P31

s 5 +P

and P23'

s s +PPI2 P13

= 0 ,

P22 Ss - p P24

ss - P P33 P34

P42 P43 P44

which is a fourth degree equation for p in which the cubic term is missing:

P4 + AP2 + BP + C = 0 ,

(lO)

(11)

(12)



Thecoefficientsof this equationare notconstructedsymmetricallyhowever,if theyare
determinedbythesolutionof thedeterminant(Equation11). Butsincep is independent of

the mass favored (Equation 8), it must be possible to give to the quantities A. B, and c a

symmetric form based upon the three masses.

So far no effort has been made to show this in extenso. In order to do so, nine quan-

tities which form a symmetrical system will be selected from the 21 invariables

PlI' P12' "''P66' such as PlI' P33' PSS; P22' P44' P66; P12' P34' PS6' or the squares of

the relative distances and velocities, and the scalar products of the three vectors of

location with their respective velocity vectors. These nine quantities shall be called the

fundamental invariables of the reduced three-body problem. If these quantities are known

as functions of time, all others can be derived from them, some with linear relationships

like Equations 6 and 7, some with the help of the Lagrange quantity p, which, because of

Equation 12, will be a function of the fundamental invariables. Twelve of the 21 invari-

ables can therefore be expressed with p and the nine quantities. In actuality, we find

2P13 = Pss - Pll - P33 '

2P24 = P66 - P22 - P44 '

2P3s = Pll - PSS - PSS '

2P46 = P22 - P44 - P66 '

2Psi = P33 - PSS - Pll '

2P6_ = P44 - P66 - P22 "

(13)

Further,

2Sl = PI2 - P34 -- P56 '

J2s3 = P34 - PS6 - P12 '

2ss = PS6 - P12 - P34 ;

(14)

and the remaining six invariables are obtained from Equation 10.

With the help of these relationships, it is also possible to express the coefficients of

the biquadratic equation (Equation 12) with the nine fundamental quantities in symmetrical

form. We shall present only the results of this somewhat complicated computation. If,
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for purposesof brevRy,we introduce

¢11 = PllP22 - Pl_ '

¢13 = PllP44 - P34P12 '

¢15 = PllPee - PseP12 '

¢31 : P33P22 -- P12P34 '

¢33 = P33P44 - P/4 '

¢35 = P33P66 - Ps6P34 '

¢Sl = PssP22 - Pl2Ps6 '

¢53 : PssP44 - P34P56 '

CSS = PssP66 - PS_ '

X13 = ¢13 + ¢31 '

×3s = ¢3s + ¢s3 '

×s, = Cs, + ¢,s '

we obtain

B --

Pll P33 Ps5

P22 P44 D66

P12 P34 P56

and

(15)

(16)



The unhandy necessity of solving Equation 12 can be avoided in all practical applica-

tions by using the always available integral of the constant impulse moment. Actually, the

two known integrals of the reduced three-body problem can be expressed through the fund-

amental invariables and p. We have the energy integral

and, ff

= - + + = constant ; (17)h _\-_-, +_+ ms/ m,_ m3_ ms

eli = PiiPaa- Pi_ (i = I, 3, 5; a

are the diagonal terms of the matrix elk (Equation 15) and if

2¢ik = A + Xjk + 2P2 '

the impulse moment is

g2

f

= --- + 2 mjmk
i mi2 j, k

= 2, 4, 6)

or

m I + m 3 + m s

g2 = G + _l-_3m_- (A + 2p 2) = constant . (18)

In Equation 18 g is the length of the impulse moment vector which stands vertically upon

the invariable plane, and

¢II ¢33 _SS X3s X51 XI3

- +--+_+ + +
m12 m_ ms _ _ mira3

If the unit of mass is chosen so that mI +m 3 +m s = 1. it follows from Equation 18 that

2p2 = mlmams(g2 - G) - A

or, if p2 and p4 are eliminated with the help of Equation 19 from Equation 12,

(19)

A2 I
Bp : i-- C-_mg_m_ (g2-_)2. (20)



Since g2 is known from the initial conditions of each special problem, p can be obtained

from Equation 19 or, if B is not equal to zero, from Equation 20.

The differential equations of the relative three-body problem can be written in vecto-

rial form:

r'i = -#iri +miR , (i = 1, 3, 5; _-m i = 1) (21)

where

and

1

]1i r i 3 ' 1(22)

These differential equations are not independent of one another because of the rela-

tionship s.iown in Equation 4. Thus it is sufficient to solve two--perhaps those for r,. r 3

(two vectorial differential equations of the second order which form a twelfth order sys-

tem). But this system is not symmetrical since one of the three masses, perhaps ms , is

given a favored position. Instead of this, however, the Lagrange theory makes it possible

to relate the problem's solution to the integration of nine first order differential equations

for the nine fundamental invariables, i.e., a completely symmetrical system with no un-

necessary components. In actuality, if we differentiate the quantities

Pii = (riri)' Pi_ : (rir_)' P_ = (r_r_) Ii = 1, 3, 5; a = i + 1)(23)

with reference to time and eliminate b, = i;l by means of Equation 21, then

1 .

"2 Pii -- Pia '

._ia = Paa - Pii_.; .L miPi

"2 Paa : -Pia#i + miPa '

(24)

in which we abbreviate

Pi : (fIR) : Pil/21 ÷ Pi3g3 + Pi5/_5 ' (i : 1, 3, 5;

Ja = 2, 4, 6) "

Pa = (raR) = Palgl + Pa3#3 + Pasts "

(25)



Theformationof the quantities Pi

clearer ff we write

Pi = Pij(#j - Pi) + Pik(_k --#i) '

where

9

and p_ from the fundamental invariables becomes even

,o : ,, (,, - ,,) +,, - ,,) +p(,, - <)
(26)

2pij = Pkk - Pii = Pjj; 2sk = Pky - Pia = PJB "

IfEquations 24 are integrated (by using, for example, the numerical methods for the given

initialconditions),the problem is solved in principle and the integrals (Equations 17 and

18) are available to check the results. The Lagrange's differentialequation for p,

can be added to the system (Equation 24) as a tenth equation, and is remarkable in its sim-

plicity and symmetry, thereby making possible another thorough check.

Under certain conditions - especially if one of the three bodies has a considerably

larger mass than the other two and their orbits can be considered to be disturbed Kepler

movements in conical sections -- it is useful to introduce, in place of the fundamental in-

variables, derived invariables which are constructed to correspond with those used in the

theory of the two-body problem.* If we set

1

gi -- -- Pi"i 3/_

r i3

cr i

ri Pia

ri Pii

P_

6o i -
Pii '

Pi = 2#i - °)i ,

Ei = OJi -- _i '

= CdiOi _ %2

). (28)

*Stumpff, K., "Calculation of Ephemerides from Initial Values," NASA Technical Note D-1415, in publication 1962.
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then these quantities, as derived from Equation 24, satisfy the differential equations

Pi

_i = Ei - 2_i2 + mi Pii

Pa

_i : - 2ffi(#i + _i) + 2mi Pii

P_

Pi : -2PiGi - 2mi Pii '

(i = i, 3, 5;

a = i + 1)

P_

ei = -Gi (_i + 2ei_ + 2mi Pii

m i

t_i : -4_iO'i ÷ 2-_i i (Pa- Pi_i)

(29)

Since only three of the six quantities (Equation 28) are independent, only three of the equa-

tion systems (Equation 29) need to be considered, i.e., /_t. _i, •i If we also set

, Pi
= • + m 1 , (30)

_i i Pll

we obtain the system:

where

/_i -- -3#i cri , (or ri

_i -- * _ 2cri 2 ;

*$

= ri_i) ;

(31)

m,
!

- p --7(2.° +
(32)
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The 7i are three functions of the invariables which, if mi iS one of the small masses, are

called perturbations. To show this, we form the equations

ri = ri°i

by differentiating the identity r_2 = x_2 +y2 ÷ zi2" After elimination of or, and c_ - _l 2 from

these equations, there are three third order differential equations:

r"i

r i2

(33)

whose nine integrals also solve the reduced problem. Because _p_

from Equation 33 that

r,i i'_'i+ 3_i;i + = 0 ,

= _:_, = o, it follows

an equation whose integral

+ r 12 - = constant

yields the energy law.

CONCLUSION

In the case of general three-body motion where the ratios of mass can have arbitrary

values, we always have to rely on numerical integration methods. We have a choice of in-

tegrating either the nine first order differential equations (Equations 24 or 31) or the three

third order differential equations (Equations 33). The preferable method is determined by

experience and _:vailable facilities. The system (Equation 33) would probably be preferred

for program-cont,'oiled electronic computers, since it requires only three, rather than

nine, tables of differences.
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For instanceif theproblemis to calculatedisturbedplanetaryorbits, whenm,denotes
themassof thesun,and%, ms two small planet masses (such as Jupiter, % < 10-3 and

Saturn, 3% < 10-4), and if the perturbations of the second order can be ignored, we use the

six equations (Equations 24 or 31) or the two equations (Equation 33) with i -- 3, 5. The

disturbing functions _'3' :¢s' which are compounded with small factors, are then calculated

with the help of the system's undisturbed movement which is known from the initial condi-

tions. This process cannot be used in equations where i = 1; the motion of the masses

% and ms relative to one another cannot (as can that of m3 or m5 relative to m1 ) be consid-

ered in first approximation to be a Kepler ellipse. It is unnecessary, on the other hand, to

solve the equation where i -- 1, since its solution is implicitly a co-product of the integra-

tion process leading to the solution of the other equations.

It should also be mentioned that

and

d(ri2pl)dt = - 2miPa

d (r40i) = 2miPii (p_ Pi_i )dt "

> (34)

can be derived from Equation 29. These equations are inIegrable for mi -- 0 and yield the

known integrals of the two-body theory:

ri2 Pl = _ = constant (energy theorem),
a i

ri40i = Pi = constant (area theorem).

In this method of writing the invariables, the formulas (Equation 34) represent four of the

differential equations of the elemental perturbations used in the theory of the special

perturbations.

The task of carrying out the integration of the equations of perturbations according to

a method which has been earlier described for the solution of the undisturbed problem will

be treated in a later report. An attempt of this type has already been made for Hill's lunar

problem,* a particularly simple variation of the restricted three-body problem. The ex-

pansion of this result to include the general problem of disturbed orbits will be of consid-

erably more interest.

*Stumpff, K., "Remarks on Hill's Lunar Theory, I and If," NASA Technical Notes D-1450, 1)-1451, in publication 1962.
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